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NONSTATIONARY IDEAL INCOMPRESSIBLE FLUID FLOWS:

CONDITIONS OF EXISTENCE AND UNIQUENESS OF SOLUTIONS

UDC 517.95A. E. Mamontov1 and M. I. Uvarovskaya2

The problem of formulating minimal conditions on input data that can guarantee the existence and
uniqueness of solutions of the boundary value problems describing non-one-dimensional ideal in-
compressible fluid flow is considered using as an example the initial boundary value problem in a
space–time cylinder constructed on a bounded flow domain with the nonpenetration condition on its
boundary (which corresponds to fluid flow in a closed vessel). The existence problems are considered
only for plane flows, and the uniqueness issues for three-dimensional flows as well. The required
conditions are obtained in the form of conditions specifying that the vorticity belongs to definite
functional Orlicz spaces. The results are compared with well-known results. Examples are given of
admissible types of singularities for which the obtained results are valid, which is a physical interpre-
tation of these results.

Key words: Euler equations, ideal incompressible fluid, nonstationary flows, generalized solu-
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Introduction. As is known, ideal incompressible fluid flow is described by the Euler equations [1]
∂v

∂t
+ (v · ∇)v + ∇p = f ; (1)

div v = 0, (2)

where v = (v1, . . . , vn) is the velocity, p is the pressure, and f is the specified vector of external mass forces. The
quantities v, p, and f are functions of time t and the spatial variables x = (x1, . . . , xn), where n = 3 corresponds
to three-dimensional flows of the general type, and n = 2 to plane–parallel flows.

The present paper deals with the problem of the mathematical well-posedness of model (1), (2), i.e., the
question of the existence and uniqueness of solutions of boundary value problems for this system. This problem is
classical; a fairly complete review of the results obtained in its solution is given in [2, 3]. Among the papers on the
well-posedness of model (1), (2), special mention should be made of the classical papers of Kato [4], Yudovich [5, 6],
and Kazhikhov [7], which underlie research in this area. In [6, 7], the physically more interesting problem of fluid
flow through a specified domain was considered, and in [4, 5], foundations are laid for the global theory of existence
and uniqueness of solutions of the initial boundary value problems for model (1), (2), i.e., corresponding global
theorems are obtained (for arbitrary large values of time and initial data). This was done for a two-dimensional
problem with initial boundary value conditions of the form

v
∣∣∣
t=0

= v0; (3)

v · n
∣∣∣
∂Ω×(0,T )

= 0, (4)
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where Ω is a bounded domain in R
2 with the boundary belonging to the class C2 (or C2+α in [4]), n is the outward

normal to ∂Ω, T > 0 is an arbitrary time interval, and v0 is the initial velocity. The solution of problem (1)–(4)
is sought in the space–time cylinder QT = Ω × (0, T ). The initial velocity should satisfy conditions (2) and (4).
Problem (1)–(4) describes the motion of a fluid in a closed vessel and is not very interesting from a practical point
of view. However, it is reasonable to begin the mathematical investigation with this problem as a model one and
then to extend it to other initial boundary value problems. For three-dimensional motion, the problem of the global
mathematical well-posedness of model (1), (2) has proved much more difficult. In particular, the question of the
global existence of solutions has not been solved as yet.

In the present work, we also confine ourselves to investigation of problem (1)–(4). The existence problem is
considered only for the case n = 2. The goal of the study is to refine the conditions on the input data and on the
desired solution that guarantee the global existence and uniqueness of solutions. In particular, it is of interest to
prove the existence of a solution for nonsmooth input (especially initial) data and to ensure the uniqueness of the
solution under the weakest (as far as possible) constraints on it. Thus, we will not consider the classical solutions
of the problem constructed in [4], but we will examine the generalized solutions for which theoretical foundations
were laid in [5]. In this case, it is sufficient to consider the case of a simply-connected bounded domain Ω because
extension to other domains can be performed in the same way as in [5]. In [5], the existence of a solution of problem
(1)–(4) was proved for bounded initial vorticity [rotv0 ∈ L∞(Ω)], and the solution itself belonged to the following
class:

rotv ∈ L∞(QT ), ‖∇p‖L∞(0,T,Lr(Ω)) � Cr ∀r � 1. (5)

It has also been shown [5] that, in class (5), the solution of the problem is unique. Among the results that have
been added to the indicated result [5] in the last 45 years, mention should be made of the following.

1. Morgulis [8] proved the existence of a solution of problem (1)–(4) for n = 2 with a rather “bad” initial
velocity:

rotv0 ∈ LM (Ω). (6)

Here LM (Ω) is an Orlicz space generated by any N -function of M such that its complementary N -function M̄

satisfies the condition
+∞∫

M̄ ′(t)t−2 exp(−t2/γ) dt <∞ (7)

with a certain constant γ(Ω) (the main concepts related to Orlicz spaces are given in Sec. 1). Conditions (6) and
(7) imply that, although rotv0 belongs to the space L1(Ω), it does not belong to Lr(Ω) for any r > 1.

2. Yudovich [2] proved the uniqueness of solution of (1)–(4) for weaker constraints on the solution, namely
for

‖ rotv‖L∞(0,T,Lr(Ω)) � Cθ(r) (r � 1) (8)

in the case of fairly slowly (logarithmically) increasing functions θ. This result is based on an analysis of the
Gronwall type inequality

∫
Ω

ψ(t,x) dx �
t∫

0

∫
Ω

g(s,x)ψ(s,x) dx ds (9)

with nonnegative functions ψ and g (for a specified function g, it is required to prove that ψ = 0); for bounded
g, the analysis of (9) is trivial (reduces to the application of the classical Gronwall lemma). For g satisfying an
estimate of the form (8) with θ(r) = r, this analysis was performed in [5] and was then strengthened in [2].

It should be noted, however, that conditions (6)–(8) are insufficiently constructive. In particular, condition
(8) is a family of conditions; in addition, it contains too awkward constraints on θ, which are difficult to verify.
With all that, the question of the optimality of these results remains open.

In the present work, instead of (6)–(8), more clearly formulated conditions on the initial data and solution
are obtained to prove the global existence and uniqueness theorems, and condition (8) is replaced by the more
natural and easily verified condition that the vorticity belongs to special Orlicz spaces. This is done, in particular,
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using the results of [9] for inequality (9). It should be noted that, in [2, 9], the relationship between inequality
(9) and the uniqueness problem for fluid particle trajectories was found independently but investigation of this
relationship was performed in different terms: by using spaces of the form (8) in [2] and by using Orlicz spaces
in [9]. The second method seems to be more natural (in particular, because vorticity is assumed to belong to only
one space and not to a family) for both the Euler equations and the problem of trajectories and the problem of
inequality (9).

To formulate the results obtained, we need some data from analysis and auxiliary constructions (see Sec. 1).
In Sec. 2, conditions are formulated that ensure the unique solvability of the two-dimensional problem (1)–(4) in
classes in which (for any n) the solution is unique and the results are compared with the similar results obtained
in [2]. The purpose of Sec. 3 is to find the most general conditions (on the input data) that guarantee the solvability
of the two-dimensional problem and to give a physical interpretation of the results obtained.

1. Auxiliary Data and Constructions. As noted above, the formulated problem can be studied using
functional Orlicz spaces. The theory of these spaces is described in detail in [10]. In the present paper, the necessary
information on them is given only briefly.

A function M of one real variable is called an N -function if it is convex and even (hence, one can examine
its behavior only on the right half-axis) and if, on the right half-axis, it increases strictly and satisfies the relations

M(s)
s

→ 0 at s→ 0,
M(s)
s

→ +∞ at s→ +∞.

For any N -function M , it is possible to determine its complementary N -function M̄ which is its Legendre transfor-
mation. Since any N -function is differentiable almost everywhere, M̄ can be defined as M̄ ′ = (M ′)−1.

If the set Ω ⊂ R
n has a finite measure (for example, is a bounded domain which will further be considered),

the Orlicz class KM (Ω) can be introduced as a set of measurable functions u such that
∫
Ω

M(u(x)) dx < ∞. The

Orlicz space LM (Ω) is the linear span of the class KM (Ω); therefore, it is natural to introduce the Luxemburg norm
in it:

‖u‖LM(Ω) = inf
{
k

∣∣∣
∫
Ω

M
(u(x)

k

)
dx � 1

}
.

Since the measure of Ω is finite, only the behavior of N -functions on +∞ is important; therefore, below it is assumed
that the formulas for them are written for large values of the arguments.

Example 1.1. M(s) = sp/p, p > 1, M̄(s) = sq/q, q = p/(p− 1), LM (Ω) = Lp(Ω), and LM̄ (Ω) = Lq(Ω).
Example 1.2. M(s) = es−s− 1 and M̄(s) = (s+ 1) ln (s+ 1) − s. The space LM (Ω) consists of functions

which belong to all Lr(Ω), r < ∞ (but are nevertheless unbounded, generally speaking), and the space LM̄ (Ω)
consists of functions which are integrable (and even possess somewhat better properties) but do not belong to any
L1+ε(Ω).

Smooth functions, generally speaking, are not dense in LM (Ω); therefore, their closure EM (Ω) [in the norm
LM (Ω)] generally forms a separable subspace in LM (Ω), and LM̄ (Ω) = (EM (Ω))∗, so that the bounded sets in
LM (Ω) are weak-star sequentially compact. The spaces EM (Ω) and LM (Ω) coincide only in the case where M
satisfies the Δ2-condition: M(2u) � CM(u) for u � 1, which that, at infinity, the growth of M is no faster than
polynomial. This condition is also a criterion of the coincidence of the sets KM (Ω) and LM (Ω).

An increase in the N -functions at infinity can be compared by means of the relations “≺” and “≺≺” defined
as follows:

M1 ≺M2 if M1(u) � M2(Cu), u� 1,

M1 ≺≺M2 if M2(u)/M1(Cu) → ∞, u→ ∞ ∀C > 0.

In the first case, there is the continuous embedding LM2(Ω) ↪→ LM1(Ω), and, in the second case, this embedding
is strict (in the theoretical-set sense) and, in some sense, compact [for example, LM2(Ω) ⊂ KM1(Ω)]. Accordingly,
the relation M1 ∼ M2 (understood as the simultaneous satisfaction of the relations M1 ≺ M2 and M2 ≺ M1) is a
criterion of the coincidence LM1(Ω) = LM2(Ω).

For the functions with growth rate faster than polynomial, the so-called Δ2-condition can be considered,
which implies that M2 ∼ M , i.e., M2(u) � M(Cu) for u � 1. Ignoring “pathological” cases (which do not arise
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in the given work), this condition is satisfied by all N -functions M that increase not more slowly than functions of
the form F (s) = exp (sε).

Thus, the Lebesgue spaces Lr(Ω) are a particular case of the Orlicz spaces, for which the theory is par-
tially similar to the theory of the spaces Lr (especially in the case where M and M̄ simultaneously satisfy the
Δ2-condition) but differs from it in many respects and allows a description of the subtle properties of the functions
in Ω.

Between the Lebesgue and Orlicz spaces there is also the following relationship. We consider the set of
measurable functions u belonging to all Lp(Ω) for p ∈ [α, β) such that ‖u‖Lp(Ω) � Cω(p), where p ∈ [α, β), with
the specified function ω. As has been noted in various cases by various researchers (see the review in [11]), this set
is contained in the Orlicz space LM (Ω) with an appropriate function M . A fairly full and systematic study of this
relationship is made in [11, 12]. The present work uses the terminology and some results of [11]. Below, we consider
only the case β = +∞. The set described above becomes a Banach space Lω,∞ if it is endowed with the norm

‖u‖Lω,∞ = sup
p∈[α,+∞)

‖u‖Lp(Ω)

ω(p)
. (1.1)

This space does not depend on the choice of α (i.e., the corresponding norms are equivalent) and does not vary if
ω varies to within equivalence of the special form:

ω1
ϕ∼ω2 ⇐⇒ C1ω1(p) � ω2(p) � C2ω1(p). (1.2)

The operators

In∞[ω](v) =

+∞∫
α

vp dp

ωp(p)
, Sc∞[Φ](p) = max

v�1

v

Φ1/p(v)

implement correspondence between the functions ω = ω(p) and the N -functions Φ = Φ(v) (see [11]), namely, in the
case of rapidly increasing Φ, i.e., slowly increasing ω (which are used below), the indicated correspondence becomes
the equality

Lω,∞ = LΦ at Φ = In∞[ω], i.e., ω = Sc∞[Φ].

Conversely, any space LΦ with a rapidly increasing Φ can be represented as Lω,∞ with the corresponding function ω.
Thus, in the case considered, the family of estimates in Lp is equivalent to the estimate in the corresponding

Orlicz space. Using this fact, one can attempt to convert the results of [2] in terms of Orlicz spaces (see Sec. 2).
However, for inequality (9), this conversion is unreasonable because, in [9], inequality (9) was studied directly in
terms of Orlicz spaces, and the result was shown to be unimprovable. A partial formulation of this result is given
below.

Definition 1.1. The class K is a set of N -functions that satisfy one of the three equivalent constraints:
+∞∫

lnM(s)
s2

ds = +∞,

+∞∫
ds

M̄(s)
= +∞,

+∞∫
ds

sM−1(s)
= +∞. (1.3)

Remark 1.1. All elements K, except in “pathological” cases, satisfy the Δ2-condition.
Statement 1.1. Let functions g and ψ be specified in QT and nonnegative, ψ ∈ L1+ε(QT ), g ∈ KM (QT ),

M ∈ K. Then, relation (9) implies that ψ = 0. If M �∈ K, there exist nonnegative ψ ∈ L∞(QT ) and g ∈
L∞(0, T, LM(Ω)) such that inequality (9) is satisfied in spite of ψ �≡ 0.

From (1.3) it follows that the class K consists of functions growing faster than all polynomials. For any
M ∈ K, it is possible to find M1 ∈ K such that M1 ≺≺ M , so that the conditions of belonging of LM or KM with
any M ∈ K are equivalent.

Example 1.3. Mα(s) = exp (s/ lnα s), Mα ∈ K at α � 1. The corresponding function ω(p) =
Sc∞[Mα](p)

ϕ∼ p lnα p. Thus, if we formulate the condition on g as ‖g‖Lp(QT ) � Cp lnα p, the statement of the
type of the Gronwall lemma for (9) is valid for α � 1. One can continue to refine the conditions on M by choosing,
for example, M(s) = exp (s/(ln s lnα ln s)), which will give new logarithms in ω (compare [2]), etc.

The properties of some differential operators in the Orlicz spaces are also needed. Since, for Lp, these
properties are well known, it is natural to employ extrapolation methods. If we use the representation of the Orlicz
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spaces in the form of the spaces Lω,∞, there is no need for these methods because of the triviality of the problem but
this representation is cumbersome and, hence, inconvenient. For the purposes of the present work, it is convenient
to use the constructive extrapolation method developed in [13–15], which consists of the following. Let a linear
operator A act boundedly in Lp for all p � 1 and its norm ‖A‖L(Lp) � Cϕ(p). Then, one should calculate the
inverse Mellin transformation on the function ϕp(p):

ϕp(p) =

+∞∫
σ

ψ(s)sp ds (1.4)

(σ � 0 can be chosen arbitrarily; moreover, formula (1.4) is extended in some sense to the case of nonanalytical
functions ϕ [15]) and use the obtained function ψ as the kernel of the convolution type integral transformation:

Fψ,σ[Φ](v) =

+∞∫
σ

ψ(s)Φ(vs) ds. (1.5)

As a result, it can be argued that A acts boundedly from LM to LΦ for any N -functions Φ and M linked by the
relation M = Fψ,σ[Φ]. In particular, if ϕ(p) = p, then, relation (1.4) (to within the relation

ϕ∼, which is insignificant
as noted above) implies that ψ(s) = e−s, and the operator (1.5) becomes the operator S, which was studied in [13]:

S[Φ](v) =

+∞∫
0

e−s Φ(vs) ds. (1.6)

Thus, we obtain the following statement.
Statement 1.2. If the linear operator A for all p� 1 has the property ‖A‖L(Lp) � Cp, then A ∈ L(LM , LΦ)

for all N -functions M and Φ linked by the relation M = S[Φ], where the operator S is defined by formula (1.6).
In the present work, Statement 1.2 is considered in the case Φ ∈ K.
Statement 1.3. If M = S[Φ] and M satisfies the Δ2-condition, then Φ ∈ K is equivalent to M ∈ K1 where

K1 consists of functions M that satisfy the condition
+∞∫

ln lnM(s)
s2

ds = +∞. (1.7)

Remark 1.2. As follows from Remark 1.1 and the fact that S increases the rate of increase of the functions
to which it is applied, the Δ2-condition in Statement 1.3 is not an additional strong constraint but it only eliminates
the “pathological” functions insignificant for applications.

Proof of Statement 1.3. We first construct a convenient representation for the asymptotics of the func-
tion M . For this, we consider the equation Φ(vs∗(v)) = exp (s∗(v)/2) for the quantity s∗(v) as v � 1. Since, for
s = 1, the quantity e−s/2 Φ(vs) > 1, and for s→ +∞ it tends to zero (since the operator S is defined on functions
growing more slowly than polynomial), such a quantity s∗(v) exists. It is also easy to show that it is unique for
v � 1 and tends monotonically to +∞ as v → +∞. Thus, for s > s∗(v), we have Φ(vs) < es/2, so that

M(v) =

s∗(v)∫
0

e−sΦ(vs) ds+

+∞∫
s∗(v)

e−sΦ(vs) ds � Φ(vs∗(v)) + 2 exp (−s∗(v)/2) � 2 exp (s∗(v)/2).

Thus, M(v) ≺ exp (s∗(v)). At the same time, if we set

β(v) =
1
4v

Φ−1
(1

2
Φ(vs∗(v))

)
,

by the definition, we obtain β(v) � s∗(v)/4 and

M(4v) �
+∞∫
β(v)

e−sΦ(4vs) ds � Φ(4vβ(v)) e−β(v) =
1
2

exp
(s∗(v)

2
− β(v)

)
� 1

2
exp (s∗(v)/4),

whence, by virtue of the Δ2-condition for M , it follows that M(v) � exp (s∗(v)).
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Thus, M(v) ∼ exp(s∗(v)). We can now write the following sequence of relations, in which the symbol “+∞∼ ”
denotes the simultaneous tension to +∞ (or the assumption of finite values):

+∞∫
ln Φ(s)
s2

ds =

+∞∫
ln Φ(vs∗(v))
v2s2∗(v)

d(vs∗(v)) =

+∞∫
1
2v

d(vs∗(v))
vs∗(v)

=
1
2v

ln (vs∗(v))
∣∣∣
v=+∞

+
1
2

+∞∫
ln(vs∗(v))

v2
dv

+∞∼
+∞∫

ln v + ln s∗(v)
v2

dv

+∞∼
+∞∫

ln s∗(v)
v2

dv =

+∞∫
ln lnM(v)

v2
dv,

which was to be proved.
2. Existence and Uniqueness of a Generalized Solution with Unbounded Vorticity. As is noted

in [2] (without proof), the definition of the generalized solution of problem (1)–(4) given in [5] and the existence
theorem for it can be extended to the case of unbounded vorticity. Therefore, in the present work, we do not give
a detailed proof of the existence and only note the differences arising in the case considered and give the necessary
data from [5].

As in [5], the problem should be reduced to finding the stream function ψ:

v = ∇̂ψ ≡
( ∂ψ
∂x2

,− ∂ψ

∂x1

)
.

In this case, by virtue of (4), it can be assumed that ψ
∣∣∣
∂Ω

= 0. Applying the rot operation [which is understood

here as a scalar operator: rotw = (w2)x1 − (w1)x2 = −∇̂ · w] to (1) and taking into account (2), we obtain the
Helmholtz equation for the vorticity ω = rotv = −Δψ:

∂ω

∂t
+ v · ∇ω = rotf .

Thus, we obtain the following problem for the stream function:
∂Δψ
∂t

+ ∇̂ψ · ∇Δψ = − rotf , ψ
∣∣∣
t=0

= ψ0, ψ
∣∣∣
∂Ω

= 0, (2.1)

where ψ0 is the stream function of the initial velocity v0.
We fix an arbitrary function M ∈ K1 and introduce the following functional spaces.
Definition 2.1. V (M) is the space of generalized solutions u of problems of the form

Δu = g, u
∣∣∣
∂Ω

= 0,

where the functions g are any elements of the space LM (Ω). In this case, ‖u‖V (M) = ‖Δu‖LM(Ω).
Definition 2.2. V

(M)
1 is the space of functions which are determined in QT , belong to V (M) for almost all

t ∈ (0, T ), and have a finite norm ‖u‖
V

(M)
1

= sup
t∈(0,T )

‖u(t, · )‖V (M) .

In the limiting case where M tends to infinity for finite values of the argument [i.e., LM (Ω) = L∞(Ω)], these
spaces coincide with the spaces V and V1 introduced in [5]. By analogy with [5], we give the following definition.

Definition 2.3. Let ψ0 ∈ V (M) and rotf ∈ L1(0, T, LM(Ω)). The generalized solution of problem (2.1) is
a function ψ ∈ V

(M)
1 that satisfies the integral identity∫

Ω

χ
∣∣∣
t=0

Δψ0 dx +
∫
QT

Δψ
[∂χ
∂t

+ ∇̂ψ · ∇χ
]
dx dt =

∫
QT

χ rotf dx dt

for all functions χ which are smooth in QT and vanish on the lateral surface ∂Ω × (0, T ) and for t = T .
It can be shown, as in [5], that, in the sense of definition 2.3, the generalized solution ψ of problem (2.1)

is weakly continuous in t in the space W 1
2 (Ω) [and in this sense, in particular, it satisfies the initial condition in

(2.1)] and has derivatives ∇ψt ∈ L∞(0, T, Lp(Ω)) for all p <∞ (although, for these derivatives, the last term in the
estimate (3.14) of [5] changes).
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The operator A : Δψ �→ D2
xψ is bounded in all Lp(Ω) and its norm ‖A‖L(Lp) � Cp (the notation D2

xh =
∇x⊗∇xh denotes the second derivatives of h with respect to x). In [5], this fact was used for the simple extrapolation
derivation: A ∈ L(L∞(Ω), LN (Ω)), where N(s) = es, and LN (Ω) was represented as Lω,∞ with ω(p) = p. In the
case considered, one needs the more general statement implied by statement 1.2: A ∈ L(LM (Ω), LΦ(Ω)), where
M = S[Φ]. According to statement 1.3, the assumption M ∈ K1 is equivalent to the fact that Φ ∈ K. Thus, we
proved the following statement.

Statement 2.1. For the generalized solution of problem (2.1), it is true that D2
xψ ∈ L∞(0, T, LΦ(Ω)), where

Φ ∈ K.
The further proof of the existence of the generalized solution almost literally follows the reasoning in [5],

and this proof implies an existence theorem similar to theorem 4.1 in [5], with the only difference that one should
replace V by V (M) and require that rotf belong only to the space L1(0, T, LM(Ω)). Indeed, the desired solution is
constructed as the fixed point of the operator B: ψ �→ ψ′ of the solution to the problem

∂Δψ′

∂t
+ ∇̂ψ · ∇Δψ′ = − rotf , ψ′

∣∣∣
t=0

= ψ0, ψ′
∣∣∣
∂Ω

= 0. (2.2)

As shown in [5], for appropriately determined solutions of this problem, the estimate

max
t∈[0,T ]

‖Δψ′(t, · )‖Lp � ‖Δψ0‖Lp +

T∫
0

‖ rotf(t, · )‖Lp dt (2.3)

holds for all p = 2k, k ∈ N. Dividing (2.3) by ω(p) and transforming to supp, we obtain the estimate

‖Δψ′‖L∞(0,T,Lω,∞) � ‖Δψ0‖Lω,∞ + ‖ rotf‖L1(0,T,Lω,∞).

Using the equivalent representation Lω,∞ = LM , we obtain the estimate

‖ψ′‖
V

(M)
1

� ‖ψ0‖V (M) + ‖ rotf‖L1(0,T,LM(Ω)),

which is an analog of estimate (4.17) in [5]. The further reasoning about the fixed point of the operator B of
problem (2.2) are repeated literally.

The main purpose of Sec. 2 is to prove the uniqueness theorem.
Theorem 2.1. For M ∈ K1 [i.e., if (1.7) is satisfied], the generalized solution of problem (2.1) in the class

V
(M)
1 (i.e., in the sense of definition 2.3) is unique.

Proof. As was shown in [5], for the difference α = ψ1 − ψ2 of two solutions, the following inequality holds:

∫
Ω

|∇α|2 dx �
t∫

0

∫
Ω

|D2
xψ1| · |∇α|2 dx ds. (2.4)

By virtue of statement 2.1, g = |D2
xψ1| ∈ L∞(0, T, LΦ(Ω)) with Φ ∈ K. Replacing, if necessary, Φ by some other

Φ1 ∈ K, we achieve the inclusion g ∈ KΦ1(QT ). In addition, by virtue of statement 2.1, |∇α| is bounded. In view
of Statement 1.1, from (2.4) we obtain ∇α = 0, and, hence, α = 0. Theorem 2.1 is proved.

The further reasoning about the determination of the pressure p and the construction of the unique gener-
alized solution of the initial problem (1)–(4) follow the logic of [5]. Thus, we proved the following theorem.

Theorem 2.2. The solution of problem (1)–(4) in the class rotv ∈ L∞(0, T, LM(Ω)), M ∈ K1 [see (1.7)]
exists and is unique (the pressure p is determined to within an additive function of time).

As noted in [2], for the proof of the uniqueness of solutions to (1)–(4), the dimension of the flow is insignificant.
We explain how theorem 2.2 is extended to the case n = 3. If problem (1)–(4) has two solutions (v1, p1) and (v2, p2),
for their difference (v, p) we have the problem

∂v

∂t
+ (v1 · ∇)v + (v · ∇)v2 + ∇p = 0, div v = 0; (2.5)

v
∣∣∣
t=0

= 0, v · n
∣∣∣
∂Ω×(0,T )

= 0. (2.6)

Multiplying the first equation in (2.5) scalarly by 2v and integrating over Qt = Ω × (0, t), in view of the second
equation in (2.5) and conditions (2.6), we obtain
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∫
Ω

|v|2 dx = −2

t∫
0

∫
Ω

(v ⊗ v) : D(v2) dx ds, (2.7)

where D is the symmetric part of the gradient (strain rate tensor). Equality (2.7) is obtained formally but, for
the solutions of the class considered, this procedure can be substantiated rigorously [2, 5]. Thus, (2.7) implies an
inequality of the form (9) with ψ = |v|2 and g = C|D(v2)|. By analogy with the two-dimensional case, we formulate
the constraint on the solution in terms of the vorticity ω = rotv. The operator of the problem for finding v for
prescribed ω:

rotv = ω, div v = 0, v · n
∣∣∣
∂Ω

= 0, (2.8)

or, more precisely, the operator ω �→ ∇ ⊗ v [in (2.7), an estimate for D(v) is required, but, in this case, it is not
better than that for ∇⊗v] for n = 3 has the same properties (used above) as for n = 2: its norm in L(Lp) does not
exceed Cp [16]. Consequently, to satisfy the equality v = 0, it is again necessary to require that D(v2) ∈ KΦ(QT ),
Φ ∈ K, which leads to the requirement ω ∈ L∞(0, T, LM(Ω)), M ∈ K1 [i.e., (1.7)]. Thus, theorem 2.2 is also true
for n = 3.

It is natural to compare the result of theorem 2.2 with the result of [2]. If the result of [2] is represented
in the notation used in the present work, it will be formulated as follows. We consider solutions of the class
rotv ∈ L∞(0, T, Lθ,∞) (here, lim is used instead of sup in (1.1), which, in this case, is insignificant) in which θ is
subject to the constraint

+∞∫
da

aρ(a)
= ∞, (2.9)

where ρ(a) = inf
ε∈[0,ε0]

aεθ(1/ε)/ε for a � 1. As is indicated in Sec. 1, this condition on v is equivalent to the

constraint rotv ∈ L∞(0, T, LM(Ω)), where M(v) =

+∞∫
1

vp dp

θp(p)
, i.e., M = In∞[θ]. Thus, the problem of the relation

between conditions (1.7) and (2.9) arises. We give a more convenient description of the class of admissible θ, i.e.,
those which satisfy (2.9).

Lemma 2.1. Condition (2.9) is equivalent to the divergence of the integral
+∞∫

dξ

ξθ(ξ)
= +∞. (2.10)

Proof. We have ρ(a) = inf
z�1

a1/zzθ(z) = a1/z∗z∗θ(z∗), where 1 + eθ(z∗) = (ln a)/z∗; eθ(z) = zθ′(z)/θ(z) is

an exponential characteristic of the function θ (see [14, 15]). As is noted in [2], condition (2.9) obviously implies
that, at infinity, the function θ increases more slowly than ln1+ε [it is easy to see that the same statement is also
true for (2.10)], i.e., eθ(z) decreases as 1/ ln z, so that z∗ has the asymptotic representation z∗ = (ln a)(1 − o(1)).
The equivalence of (2.9) and (2.10) is now obvious. Lemma 2.1 is proved.

Example 2.1. If θ(p) = lnα p, α > 0, the condition (2.10) is satisfied for α � 1. In addition, the class (2.9)
[or what is the same, the class (2.10)] contains functions of the form θ(p) = ln p ln ln p . . . (see [2]).

Example 2.2. We consider the function M(v) = exp (exp (vγ)), γ > 0. Clearly, (1.7) is satisfied for γ � 1.
It is easy to show that θ(p) = Sc∞[M ](p)

ϕ∼ ln1/γ p. Thus, condition (2.9) is also satisfied for γ � 1.
The following lemma can be formulated.
Lemma 2.2. Condition (1.7) is equivalent to the divergence of the integral

+∞∫
ds

sM−1(es)
= +∞. (2.11)

Proof. As is proved in [9] [see also (1.3)], the following conditions are equivalent:
+∞∫

lnN(s)
s2

= +∞ ⇐⇒
+∞∫

ds

sN−1(s)
= +∞.

Changing N(s) = lnM(s), we obtain the required result.
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Preliminary construction is completed by the following asymptotic representation.
Lemma 2.3. For the functions θ of the class (2.9) [or what is the same, the class (2.10)] and the functions

M of the class (1.7) [or, what is the same, the class (2.11)] linked by the relation M = In∞[θ] (i.e., θ = Sc∞[M ]),
the asymptotics θ(s)

ϕ∼M−1(es) holds.
Proof. We introduce the following notation: N = M−1; κ is a function that describes the solution

of the equation eN(κ(p)) = 1/p (as shown in [14], for the functions of the class considered, this equation has
a unique solution; therefore, the function κ is correctly determined). Then, θ(p) = N(κ(p))κ−1/p(p) because
θ(p) = maxM−1(v)/v1/p. For the function M(u) = exp (exp (uγ)) from example 2.2, it is easy to calculate
ln κ(p) ∼ (p/γ)/ ln (p/γ), so that, in the class considered, ln κ(p) obviously increases more slowly than p. From
this, in particular, it follows that ln κ(p) − p < 0 at p� 1. We examine the quantity

A ≡ lnN(κ(p)) − lnN(ep) =

κ(p)∫
ep

N ′(ξ) dξ
N(ξ)

=

p∫
κ

−1(ep)

N ′(κ(η))κ′(η) dη
N(κ(η))

=

p∫
κ

−1(ep)

κ
′(η) dη
ηκ(η)

.

Estimating the multiplier η ∈ [κ−1(ep), p] in the denominator and calculating the integral, we obtain the estimate

A ∈
[ ln κ(p)

p
− 1,

ln κ(p) − p

κ−1(ep)

]
.

Thus,

−1 � lnN(κ(p)) − lnN(ep) − ln κ(p)
p

� ln κ(p) − p

κ−1(ep)
− ln κ(p)

p
< 0

(we note that the last expression tends to zero as p → ∞), whence we finally obtain e−1 � θ(p)/N(ep) � 1, which
was to be proved.

Using Lemmas 2.1–2.3, we finally obtain the following statement.
Statement 2.2. Conditions (2.9) and (1.7) are equivalent.
Thus, the result of Theorem 2.2 coincides with result of [2]. The equivalence of these results agrees with the

unimprovability of the conditions on the function g in inequality (9), which is proved in different terms in [2] (in
terms reduced to the spaces Lθ,∞) and [9] (in terms of Orlicz spaces). However, in our opinion, an advantage of the
result obtained in the present work is that it is clearer and more convenient for the verification of the conditions of
the theorem.

3. Existence of Weakly Regular Solutions of the Plane Problem (1)–(4). We consider problem
(1)–(4) for n = 2 and find conditions on the input data, especially on the initial data v0, for which it is possible to
prove the existence of solutions. The class of solutions obtained in this case is much wider than that considered in
Sec. 2 and the uniqueness of these solutions would be difficult to prove.

As noted in the introduction, the problem in question was studied in [8], where the class (6), (7) was
formulated. Some designations used in the following definition were taken from [8].

Definition 3.1. S(Ω) is a set of smooth vector fields v specified in Ω and satisfying (2) and (4); S2(Ω) is
the closure of S(Ω) in the norm L2(Ω).

The solutions of the class considered in Sec. 3 are described in the following definition.
Definition 3.2. Let v0 ∈ S2(Ω) and f ∈ L2(QT ). A function v ∈ L2(0, T, S2(Ω)) is called a weak

generalized solution of problem (1)–(4) if it satisfies the identity∫
QT

v ·
[∂ξ

∂t
+ (v · ∇)ξ

]
dx dt+

∫
QT

f · ξ dx dt+
∫
Ω

v0 · ξ
∣∣∣
t=0

dx = 0 (3.1)

for all ξ ∈ C∞(QT ) such that ξ
∣∣∣
t=T

= 0, ξ(t, · ) ∈ S(Ω) for all t ∈ [0, T ].

Definition 3.2 does not contain p but the pressure is uniquely (to within an additive function of t) retrieved in
v on the basis of the orthogonal decomposition L2(Ω) = S2(Ω)⊕G(Ω) [17] which also makes definition 3.2 correct.

The main purpose of Sec. 3 is to prove the following theorem.
Theorem 3.1. Let an N -function M be such that

M̄(s) ≺≺ exp (s2). (3.2)
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Then, for any input data of the class

rotv0 ∈ LM (Ω); (3.3)

rotf ∈ L1(0, T, LM(Ω))

a generalized weak solution of problem (1)–(4) in the sense of definitions 3.2 exists and

v ∈ L∞(0, T, S2(Ω)), rotv ∈ L∞(0, T, LM (Ω)); (3.4)

and if M satisfies the Δ2-condition, the following estimate holds:

‖ rotv‖L∞(0,T,LM(Ω)) � ‖ rotv0‖LM(Ω) + ‖ rotf‖L1(0,T,LM (Ω)). (3.5)

Remark 3.1. By virtue of the non-faster-than-polynomial growth of the functions M considered, the Δ2-
condition has a purely technical nature and does not impose significant constraints on M .

Proof of Theorem 3.1. We denote Y = { u ∈ S2(Ω): rot u ∈ LM (Ω)}, ‖u‖Y = ‖u‖L2(Ω) + ‖ rotu‖LM(Ω).
According to the condition, v0 ∈ Y . We consider a sequence of functions v0k ∈ S(Ω) such that v0k → v0 weak-star
in Y . For example, as the functions v0k, we may use averagings of v0. For each k, it is possible to construct a
unique generalized solution vk of problem (1)–(4) (with v0k instead of v0) in the sense of the definition in Sec. 2;
in this case, the following estimate holds:

‖ rotvk‖L∞(0,T,LM(Ω)) � ‖ rotv0k‖LM(Ω) + ‖ rotf‖L1(0,T,LM (Ω)) (3.6)

(for this estimate see, for example, [8]), and vk and v0k satisfy identity (3.1). These approximate solutions are
smooth enough (with a large margin) for the first energy estimate.

The key role in the present construction is played by the compact embedding Y ↪→↪→ L2(Ω), which follows
from the following consideration. As noted in [18], W̊ 1

2 (Ω) ↪→↪→ LM̄ (Ω) if condition (3.2) is satisfied; therefore,
LM (Ω) ↪→↪→ W−1

2 (Ω). By virtue of the method of compensated compactness (see [19]), we obtain the required
embedding Y ↪→↪→ L2(Ω). By virtue of (3.6) and the first energy estimate, the set {vk} is bounded in the space
L∞(0, T, Y ); therefore, there exists v ∈ L∞(0, T, Y ) such that vk → v weak-star in this space (after selection of
the subsequence). Thus, this function satisfies (3.4). If M satisfies the Δ2-condition, it is possible to achieve that
rotv0k → rotv0 in the norm LM (Ω); then, in (3.6), we can pass to the limit and obtain (3.5).

Identity (3.1) for vk implies that ∂vk/∂t act on solenoidal finite functions in the same way as the expression
f − div (vk ⊗ vk), i.e., these quantities coincide as functionals above the space of the corresponding test functions.
Thus, {∂vk/∂t} is bounded in L2(0, T,X∗), where X = {ξ ∈ W̊ 1

∞(Ω), div ξ = 0} [X∗ is a special extension of
the space W−1

1 (Ω)]. By virtue of the embeddings Y ↪→↪→ L2(Ω) ↪→↪→ X∗ and the Aubin–Simon considerations of
compactness [20, 21], it can be argued that {vk} is compact in L2(QT ). Thus, it can be assumed that vk → v strongly
in L2(QT ), but, in this case, the passage to the limit in identity (3.1) for vk is trivial, and, consequently, v is the
desired solution. The theorem is proved.

Remark 3.2. From the boundedness of {∂vk/∂t} in L2(0, T,X∗) and {vk} in L∞(0, T, Y ), using a standard
reasoning, we obtain the convergence vk(t) → v(t) in the norm L2(Ω) for almost all t ∈ [0, T ]. Therefore, in
definition 3.2, one need not require the condition ξ

∣∣∣
t=T

= 0 and can take the integral over Qt instead of QT . This

gives rise to the additional integral
∫
Ω

v · ξ dx, in which passage to the limit is also possible (this type of definition

of the solution was proposed in [2]).
Remark 3.3. From the proof of Theorem 3.1, it follows that the class of flows considered in it is extremely

wide and still admissible for the property v(t, · ) ∈ L2(Ω), which implies that the flow kinetic energy (over the entire
domain and subdomains) is finite if the class is formulated in terms of vorticity.

The problem arises of comparing the result of Theorem 3.1 with the result of [8], i.e., the problem of the
relation between conditions (7) and (3.2). This comparison is especially important since different methods were
used. In [8], the compactness estimate was derived by analyzing the properties of solutions to problem (2.8) using
the singular integral:

v(x) =
∫
Ω

g(x,y)ω(y) dy. (3.7)
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In this case, according to Lemma 1 in [8], the constant γ in (7) is calculated as follows: γ = 4A, where A is the
constant in the estimate mes {k(z) > t} � (A/t)2, and k(z) � C/|z|, |g(x,y)| � C/|x − y|. Thus, γ = 4C

√
π,

where C is the constant in the estimate of the kernel g in (3.7), which depends on the diameter of Ω. For the
class considered in the present paper, we can write M̄(s) = exp (s2/ν(s)), where ν is a function that, at infinity,
increases more slowly than the quadratic function. For simplicity, we confine ourselves to monotonically increasing
functions ν; then, the limit lim

s→+∞ ν(s) � +∞ exists. It is easy to show that condition (3.2) is equivalent to the

requirement

lim
s→+∞ ν(s) = +∞. (3.8)

At the same time, condition (7) is written as
+∞∫

exp
( t2

ν(t)
− t2

γ

)2 − eν(t)
tν(t)

dt < +∞.

By virtue of the polynomial nature of the asymptotics of the fraction (2 − eν(t))/(tν(t)) at infinity, this condition
implies that

lim
s→+∞ ν(s) > γ. (3.9)

Thus, for any fixed domain Ω, condition (7) [or, what is the same, condition (3.9)] is weaker (more general) than
condition (3.2) [or what is the same, condition (3.8)], but if the result is considered in the class of all domains Ω
simultaneously, these conditions are equivalent.

Advantages of Theorem 3.1 are the clearer form of condition (3.2) and the weaker requirements for f than
those in [8]. In addition, in Theorem 3.1 (in contrast to [8]), the Δ2-condition for M , generally speaking, is not
required, if there is no need to obtain estimate (3.5).

In conclusion, we give a partial physical interpretation of the results obtained. We construct a solenoidal
field u in R

2 which belongs to L2(Ω) and has vorticity with a singularity of specified nature in the vicinity of zero
(for definiteness, we assume that 0 ∈ Ω). We will seek this field in the form u = ∇̂ψ, where ψ = ψ(r), r = |x|.
Then,

ω = ω(r) = rotu = −Δψ(r) = −ψ′′(r) − ψ′(r)/r,

where the prime denotes differentiation with respect to r. If ω is specified, the stream function ψ is expressed as

ψ′(r) =
A

r
− 1
r

r∫
0

ξω(ξ) dξ

with an arbitrary constant A. Obviously,

u = ψ′(r) ·
[

x2/r

−x1/r

]
,

i.e., |u| = ψ′(r). Since we consider flows with integrable vorticity, it follows that

r∫
0

ξω(ξ) dξ → 0 as r → 0; therefore,

ψ′(r) = (A + o(1))/r, and for the embedding u ∈ L2(Ω), it is necessary and sufficient that A = 0. Thus, for any
specified function ω = ω(r), it is possible to construct a field

u =
1
r2

r∫
0

ξω(ξ) dξ ·
[ −x2

x1

]
(3.10)

with vorticity ω and finite energy. The condition ω ∈ LM (Ω) implies the convergence of the integral∫
0

ξM
(ω(ξ)
C

)
dξ <∞ (3.11)

with some constant C. If M satisfies the Δ2-condition, the choice of C is of no significance since, in this case,
KM = LM .
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Example 3.1. The function M ∈ K1, i.e., it satisfies (1.7), for example, M(s) = exp (es) (this function M

is close to the lower boundary of the class K1). We set ω(ξ) = lnα + ln ln (1/ξ). It is easy to verify that condition
(3.11) is satisfied for α < 2. In this case,

r∫
0

ξω(ξ) dξ =
1
2

(
− Ei

(
− 2 ln

1
r

)
+ r2

(
lnα+ ln ln

1
r

))
∼ 1

2
r2 ln ln

1
r
,

where Ei(z) =

z∫
−∞

eη

η
dη, i.e., after multiplication by 2, the field (3.10) becomes

u ∼
(

ln ln
1
r

) [ −x2

x1

]
. (3.12)

Example 3.2. The function M satisfies the condition (3.2), for example, M(s) = s lnβ s, where β > 1/2.
We set ω(ξ) = ξ−2 ln−α−β (1/ξ). It is easy to verify that (3.11) is satisfied for α > 1. In this case,

r∫
0

ξω(ξ) dξ =
ln1−α−β (1/r)
α+ β − 1

.

After multiplication by the constant, the field (3.10) becomes

u ∼ r−2
(

ln−γ 1
r

)[ −x2

x1

]
, γ >

1
2
. (3.13)

Having such fields u, one can move the singularity from zero to other points of the domain and combine the
fields with each other and with suitable smooth solenoidal fields [in such a manner that the sum satisfies condition
(4)]. As a result, we obtain the initial fields v0 with point singularities of the classes considered in the present work
[i.e., satisfying (3.3) with functions M of the corresponding classes].

Conclusions. Thus, some of the results of the investigation can be formulated as follows: if the singularities
of the initial velocity are not worse than the singularity (3.13), it is possible to construct a solution (with finite kinetic
energy) of problem (1)–(4), which, for all t, preserves regularity not worse than the initial one; if the singularities
of the initial velocity are not worse than the singularity (3.12), the corresponding solution for all t belongs to the
same class, and, in this class, the uniqueness of the solution is guaranteed.

This work was supported by the Russian Foundation for Basic Research (Grant No. 07-01-00550) and a
grant of the President of the Russian Federation for state support of young Russian researchers — candidates of
sciences and their chiefs (No. MK-213.2008.1).
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3. P. Gérard, “Résultats récents sur les fluides parfaits incompressibles bidimensionelles (d’après J.-Y. Chemin et

J.-M. Delort),” Seminaire Bourbaki, 44ème année, No. 757, 411–444 (1991–1992).
4. T. Kato, “On classical solutions of the two-dimensional non-stationary Euler equations,” Arch. Rat. Mech.

Anal., 25, No. 3, 188–200 (1967).
5. V. I. Yudovich, “Nonstationary flows of an ideal incompressible fluid,” Zh. Vychisl. Mat. Mat Fiz., 3, No. 6,

1032–1066 (1963).
6. V. I. Yudovich, “Two-dimensional nonstationary problem of an ideal incompressible fluid through a specified

domain,” Mat. Sb., 64, No. 4, 562–588 (1964).
7. A. V. Kazhikhov, “Well-posedness of the nonstationary problem of ideal fluid flow through a specified domain,”

in: Dynamics of Continuous Media (collected scientific papers) [in Russian], No. 47, Inst. of Hydrodynamics,
Sib. Div., Acad. of Sci. of the USSR, Novosibirsk (1980), pp. 37–56.

640



8. A. B. Morgulis, “Existence of two-dimensional nonstationary flows of an ideal incompressible fluid admitting
vorticity nonsummable to any power greater than unity,” Sib. Mat. Zh., 33, No. 5, 209–212 (1992).

9. A. V. Kazhihov and A. E. Mamontov, “On one class of convex functions and exact classes of well-posedness of
the Cauchy problem for the transfer equation in Orlicz spaces,” Sib. Mat. Zh., 39, No. 4, 831–850 (1998).

10. M. A. Krasnosel’skii and Ya. B. Rutitskii, Convex Functions and Orlicz Spaces [in Russian], Nauka, Moscow
(1958).

11. A. E. Mamontov, “Scales of the spaces Lp and their relationship with Orlicz spaces,” Vestn. NGU, Ser. Mat.
Mekh. Informatika, 6, No. 2. 34–57 (2006).

12. S. V. Astashkin and K. V. Lykov, “Extrapolation description of Lorentz and Martsinkevich spaces close to L∞,”
Sib. Mat. Zh., 47, No. 5. 974–992 (2006).

13. A. E. Mamontov, “Extrapolation of linear operators from Lp to the Orlicz spaces generated by fast or slowly
increasing N -functions,” in: Urgent Problems of Modern Mathematics [in Russian], Vol. 2, Novosibirsk State
Univ., Novosibirsk (1996), pp. 95–103.

14. A. E. Mamontov, “Integral representations and transformations of N -functions 1,” Sib. Mat. Zh., 47, No. 1,
123–145 (2006).

15. A. E. Mamontov, “Integral representations and transformations of N -functions 2,” Sib. Mat. Zh., 47, No. 4.
811–830 (2006).

16. V. I. Yudovich, Linearization Method in the Hydrodynamic Theory of Stability [in Russian], Izd. Rostov. Univ.,
Rostov-on-Don (1984).

17. O. A. Ladyzhenskaya, Mathematical Problems of the Dynamics of a Viscous Incompressible Fluid [in Russian],
Nauka, Moscow (1970).

18. S. I. Pokhozhaev, “On the Sobolev embedding theorem in the case lp = n,” in: Proc. Conf. on Results of
Research in 1964–1965 [in Russian], Izd. Mosk. Énerg. Inst., Moscow (1965), pp. 158–170.
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